Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMJ Open ; 11(11): e054493, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848524

RESUMEN

INTRODUCTION: In one-third of all abdominal aortic aneurysms (AAAs), the aneurysm neck is short (juxtarenal) or shows other adverse anatomical features rendering operations more complex, hazardous and expensive. Surgical options include open surgical repair and endovascular aneurysm repair (EVAR) techniques including fenestrated EVAR, EVAR with adjuncts (chimneys/endoanchors) and off-label standard EVAR. The aim of the UK COMPlex AneurySm Study (UK-COMPASS) is to answer the research question identified by the National Institute for Health Research Health Technology Assessment (NIHR HTA) Programme: 'What is the clinical and cost-effectiveness of strategies for the management of juxtarenal AAA, including fenestrated endovascular repair?' METHODS AND ANALYSIS: UK-COMPASS is a cohort study comparing clinical and cost-effectiveness of different strategies used to manage complex AAAs with stratification of physiological fitness and anatomical complexity, with statistical correction for baseline risk and indication biases. There are two data streams. First, a stream of routinely collected data from Hospital Episode Statistics and National Vascular Registry (NVR). Preoperative CT scans of all patients who underwent elective AAA repair in England between 1 November 2017 and 31 October 2019 are subjected to Corelab analysis to accurately identify and include every complex aneurysm treated. Second, a site-reported data stream regarding quality of life and treatment costs from prospectively recruited patients across England. Site recruitment also includes patients with complex aneurysms larger than 55 mm diameter in whom an operation is deferred (medical management). The primary outcome measure is perioperative all-cause mortality. Follow-up will be to a median of 5 years. ETHICS AND DISSEMINATION: The study has received full regulatory approvals from a Research Ethics Committee, the Confidentiality Advisory Group and the Health Research Authority. Data sharing agreements are in place with National Health Service Digital and the NVR. Dissemination will be via NIHR HTA reporting, peer-reviewed journals and conferences. TRIAL REGISTRATION NUMBER: ISRCTN85731188.


Asunto(s)
Aneurisma de la Aorta Abdominal , Implantación de Prótesis Vascular , Procedimientos Endovasculares , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/cirugía , Estudios de Cohortes , Humanos , Complicaciones Posoperatorias , Calidad de Vida , Factores de Riesgo , Medicina Estatal , Resultado del Tratamiento , Reino Unido
2.
Elife ; 102021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34528872

RESUMEN

Multicellular organisms maintain structure and function of tissues/organs through emergent, self-organizing behavior. In this report, we demonstrate a critical role for lung mesenchymal stromal cell (L-MSC) aging in determining the capacity to form three-dimensional organoids or 'alveolospheres' with type 2 alveolar epithelial cells (AEC2s). In contrast to L-MSCs from aged mice, young L-MSCs support the efficient formation of alveolospheres when co-cultured with young or aged AEC2s. Aged L-MSCs demonstrated features of cellular senescence, altered bioenergetics, and a senescence-associated secretory profile (SASP). The reactive oxygen species generating enzyme, NADPH oxidase 4 (Nox4), was highly activated in aged L-MSCs and Nox4 downregulation was sufficient to, at least partially, reverse this age-related energy deficit, while restoring the self-organizing capacity of alveolospheres. Together, these data indicate a critical role for cellular bioenergetics and redox homeostasis in an organoid model of self-organization and support the concept of thermodynamic entropy in aging biology.


Many tissues in the body are capable of regenerating by replacing defective or worn-out cells with new ones. This process relies heavily on stem cells, which are precursor cells that lack a set role in the body and can develop into different types of cells under the right conditions. Tissues often have their own pool of stem cells that they use to replenish damaged cells. But as we age, this regeneration process becomes less effective. Many of our organs, such as the lungs, are lined with epithelial cells. These cells form a protective barrier, controlling what substances get in and out of the tissue. Alveoli are parts of the lungs that allow oxygen and carbon dioxide to move between the blood and the air in the lungs. And alveoli rely on an effective epithelial cell lining to work properly. To replenish these epithelial cells, alveoli have pockets, in which a type of epithelial cell, known as AEC2, lives. These cells can serve as stem cells, developing into a different type of cell under the right conditions. To work properly, AEC2 cells require close interactions with another type of cell called L-MSC, which supports the maintenance of other cells and also has the ability to differentiate into several other cell types. Both cell types can be found close together in these stem cell pockets. So far, it has been unclear how aging affects how these cells work together to replenish the epithelial lining of the alveoli. To investigate, Chanda et al. probed AEC2s and L-MSCs in the alveoli of young and old mice. The researchers collected both cell types from young (2-3 months) and aged (22-24 months) mice. Various combinations of these cells were grown to form 3D structures, mimicking how the cells grow in the lungs. Young L-MSCs formed normal 3D structures with both young and aged AEC2 cells. But aged L-MSCs developed abnormal, loose structures with AEC2 cells (both young and old cells). Aged L-MSCs were found to have higher levels of an enzyme (called Nox4) that produces oxidants and other 'pro-aging' factors, compared to young L-MSCs. However, reducing Nox4 levels in aged L-MSCs allowed these cells to form normal 3D structures with young AEC2 cells, but not aged AEC2 cells. These findings highlight the varying effects specific stem cells have, and how their behaviour is affected by pro-aging factors. Moreover, the pro-aging enzyme Nox4 shows potential as a therapeutic target ­ downregulating its activity may reverse critical effects of aging in cells.


Asunto(s)
Células Epiteliales Alveolares , Senescencia Celular/fisiología , Células Madre Mesenquimatosas , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/fisiología , Animales , Células Cultivadas , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Organoides/citología , Organoides/metabolismo , Estrés Oxidativo
3.
Nat Aging ; 1(2): 205-217, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-34386777

RESUMEN

Aging is a risk factor for progressive fibrotic disorders involving diverse organ systems, including the lung. Idiopathic pulmonary fibrosis, an age-associated degenerative lung disorder, is characterized by persistence of apoptosis-resistant myofibroblasts. In this report, we demonstrate that sirtuin-3 (SIRT3), a mitochondrial deacetylase, is downregulated in lungs of IPF human subjects and in mice subjected to lung injury. Over-expression of the SIRT3 cDNA via airway delivery restored capacity for fibrosis resolution in aged mice, in association with activation of the forkhead box transcription factor, FoxO3a, in fibroblasts, upregulation of pro-apoptotic members of the Bcl-2 family, and recovery of apoptosis susceptibility. While transforming growth factor-ß1 reduced levels of SIRT3 and FoxO3a in lung fibroblasts, cell non-autonomous effects involving macrophage secreted products were necessary for SIRT3-mediated activation of FoxO3a. Together, these findings reveal a novel role of SIRT3 in pro-resolution macrophage functions that restore susceptibility to apoptosis in fibroblasts via a FoxO3a-dependent mechanism.


Asunto(s)
Fibrosis Pulmonar Idiopática , Sirtuina 3 , Humanos , Animales , Ratones , Sirtuina 3/genética , Pulmón/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/metabolismo , Expresión Génica
4.
Am J Physiol Heart Circ Physiol ; 318(6): H1487-H1508, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32357113

RESUMEN

Cell-autonomous circadian clocks have emerged as temporal orchestrators of numerous biological processes. For example, the cardiomyocyte circadian clock modulates transcription, translation, posttranslational modifications, ion homeostasis, signaling cascades, metabolism, and contractility of the heart over the course of the day. Circadian clocks are composed of more than 10 interconnected transcriptional modulators, all of which have the potential to influence the cardiac transcriptome (and ultimately cardiac processes). These transcriptional modulators include BMAL1 and REV-ERBα/ß; BMAL1 induces REV-ERBα/ß, which in turn feeds back to inhibit BMAL1. Previous studies indicate that cardiomyocyte-specific BMAL1-knockout (CBK) mice exhibit a dysfunctional circadian clock (including decreased REV-ERBα/ß expression) in the heart associated with abnormalities in cardiac mitochondrial function, metabolism, signaling, and contractile function. Here, we hypothesized that decreased REV-ERBα/ß activity is responsible for distinct phenotypical alterations observed in CBK hearts. To test this hypothesis, CBK (and littermate control) mice were administered with the selective REV-ERBα/ß agonist SR-9009 (100 mg·kg-1·day-1 for 8 days). SR-9009 administration was sufficient to normalize cardiac glycogen synthesis rates, cardiomyocyte size, interstitial fibrosis, and contractility in CBK hearts (without influencing mitochondrial complex activities, nor normalizing substrate oxidation and Akt/mTOR/GSK3ß signaling). Collectively, these observations highlight a role for REV-ERBα/ß as a mediator of a subset of circadian clock-controlled processes in the heart.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Miocardio/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/agonistas , Factores de Transcripción ARNTL/metabolismo , Animales , Ritmo Circadiano/efectos de los fármacos , Expresión Génica , Regulación de la Expresión Génica , Corazón/efectos de los fármacos , Ratones , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Pirrolidinas/farmacología , Tiofenos/farmacología
5.
Mol Aspects Med ; 65: 56-69, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30130563

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and terminal lung disease with no known cure. IPF is a disease of aging, with median age of diagnosis over 65 years. Median survival is between 3 and 5 years after diagnosis. IPF is characterized primarily by excessive deposition of extracellular matrix (ECM) proteins by activated lung fibroblasts and myofibroblasts, resulting in reduced gas exchange and impaired pulmonary function. Growing evidence supports the concept of a pro-fibrotic environment orchestrated by underlying factors such as genetic predisposition, chronic injury and aging, oxidative stress, and impaired regenerative responses may account for disease development and persistence. Currently, two FDA approved drugs have limited efficacy in the treatment of IPF. Many of the genes and gene networks associated with lung development are induced or activated in IPF. In this review, we analyze current knowledge in the field, gained from both basic and clinical research, to provide new insights into the disease process, and potential approaches to treatment of pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/metabolismo , Animales , Biomarcadores , Microambiente Celular , Susceptibilidad a Enfermedades , Proteínas de Homeodominio/metabolismo , Humanos , Miofibroblastos/metabolismo , Fibrosis Pulmonar/patología , Transducción de Señal , Células del Estroma , Transactivadores , Factor de Crecimiento Transformador beta/metabolismo
6.
Sci Rep ; 8(1): 902, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343725

RESUMEN

Differentiation of circulating monocytes into tissue-bound or tissue-resident macrophages is a critical regulatory process affecting host defense and inflammation. However, the regulatory signaling pathways that control the differentiation of monocytes into specific and distinct functional macrophage subsets are poorly understood. Herein, we demonstrate that monocyte-to-macrophage differentiation is controlled by the Protein Phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A). Genetic manipulation experiments demonstrated that overexpression of PPM1A attenuated the macrophage differentiation program, while knockdown of PPM1A expression accelerated the ability of monocytes to differentiate into macrophages. We identify imiquimod and Pam3CSK4 as two Toll-like receptor agonists that induce PPM1A expression, and show that increased expression of PPM1A at the onset of differentiation impairs cellular adherence, reduces expression of inflammatory (M1) macrophage-specific markers, and inhibits the production of inflammatory cytokines. Our findings reveal PPM1A as a negative threshold regulator of M1-type monocyte-to-macrophage differentiation, establishing it as a key phosphatase that orchestrates this program.


Asunto(s)
Diferenciación Celular/fisiología , Macrófagos/metabolismo , Macrófagos/fisiología , Monocitos/metabolismo , Monocitos/fisiología , Proteína Fosfatasa 2C/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Citocinas/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Receptores Toll-Like/metabolismo
7.
J Vis Exp ; (121)2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28362407

RESUMEN

The early drug development process for anti-tuberculosis drugs is hindered by the inefficient translation of compounds with in vitro activity to effectiveness in the clinical setting. This is likely due to a lack of consideration for the physiologically relevant cellular penetration barriers that exist in the infected host. We recently established an alternative infection model that generates large macrophage aggregate structures containing densely packed M. tuberculosis (Mtb) at its core, which was suitable for drug susceptibility testing. This infection model is inexpensive, rapid, and most importantly BSL-2 compatible. Here, we describe the experimental procedures to generate Mtb/macrophage aggregate structures that would produce macrophage-passaged Mtb for drug susceptibility testing. In particular, we demonstrate how this infection system could be directly adapted to the 96-well plate format showing throughput capability for the screening of compound libraries against Mtb. Overall, this assay is a valuable addition to the currently available Mtb drug discovery toolbox due to its simplicity, cost effectiveness, and scalability.


Asunto(s)
Antituberculosos/farmacología , Macrófagos/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/microbiología , Humanos , Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis/tratamiento farmacológico
8.
Sci Rep ; 7: 42101, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28176854

RESUMEN

The ability to suppress host macrophage apoptosis is essential for M. tuberculosis (Mtb) to replicate intracellularly while protecting it from antibiotic treatment. We recently described that Mtb infection upregulated expression of the host phosphatase PPM1A, which impairs the antibacterial response of macrophages. Here we establish PPM1A as a checkpoint target used by Mtb to suppress macrophage apoptosis. Overproduction of PPM1A suppressed apoptosis of Mtb-infected macrophages by a mechanism that involves inactivation of the c-Jun N-terminal kinase (JNK). Targeted depletion of PPM1A by shRNA or inhibition of PPM1A activity by sanguinarine restored JNK activation, resulting in increased apoptosis of Mtb-infected macrophages. We also demonstrate that activation of JNK by subtoxic concentrations of anisomycin induced selective apoptotic killing of Mtb-infected human macrophages, which was completely blocked in the presence of a specific JNK inhibitor. Finally, selective killing of Mtb-infected macrophages and subsequent bacterial release enabled rifampicin to effectively kill Mtb at concentrations that were insufficient to act against intracellular Mtb, providing proof of principle for the efficacy of a "release and kill" strategy. Taken together, these findings suggest that drug-induced selective apoptosis of Mtb-infected macrophages is achievable.


Asunto(s)
Interacciones Huésped-Patógeno , Evasión Inmune , Macrófagos/microbiología , Macrófagos/fisiología , Mycobacterium tuberculosis/patogenicidad , Proteína Fosfatasa 2C/metabolismo , Transducción de Señal , Antituberculosos/farmacología , Apoptosis , Supervivencia Celular , Células Cultivadas , Humanos , Rifampin/farmacología
9.
Appl Environ Microbiol ; 80(11): 3375-83, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24657858

RESUMEN

Anaerobic digesters rely on the diversity and distribution of parallel metabolic pathways mediated by complex syntrophic microbial communities to maintain robust and optimal performance. Using mesophilic swine waste digesters, we experimented with increased ammonia loading to induce a shift from aceticlastic methanogenesis to an alternative acetate-consuming pathway of syntrophic acetate oxidation. In comparison with control digesters, we observed shifts in bacterial 16S rRNA gene content and in functional gene repertoires over the course of the digesters' 3-year operating period. During the first year, under identical startup conditions, all bioreactors mirrored each other closely in terms of bacterial phylotype content, phylogenetic structure, and evenness. When we perturbed the digesters by increasing the ammonia concentration or temperature, the distribution of bacterial phylotypes became more uneven, followed by a return to more even communities once syntrophic acetate oxidation had allowed the experimental bioreactors to regain stable operation. The emergence of syntrophic acetate oxidation coincided with a partial shift from aceticlastic to hydrogenotrophic methanogens. Our 16S rRNA gene analysis also revealed that acetate-fed enrichment experiments resulted in communities that did not represent the bioreactor community. Analysis of shotgun sequencing of community DNA suggests that syntrophic acetate oxidation was carried out by a heterogeneous community rather than by a specific keystone population with representatives of enriched cultures with this metabolic capacity.


Asunto(s)
Acetatos/metabolismo , Amoníaco/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Reactores Biológicos/microbiología , Biota/efectos de los fármacos , Animales , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Heces/microbiología , Hidrógeno/metabolismo , Metano/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Porcinos
10.
Exp Neurol ; 192(2): 407-19, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15755558

RESUMEN

We have developed an animal model of diabetic sympathetic autonomic neuropathy which is characterized by neuroaxonal dystrophy (NAD), an ultrastructurally distinctive axonopathy, in chronic streptozotocin (STZ)-diabetic rats. Diabetes-induced alterations in the sorbitol pathway occur in sympathetic ganglia and therapeutic agents which inhibit aldose reductase or sorbitol dehydrogenase improve or exacerbate, respectively, diabetes-induced NAD. The sorbitol dehydrogenase inhibitor SDI-711 (CP-470711, Pfizer) is approximately 50-fold more potent than the structurally related compound SDI-158 (CP 166,572) used in our earlier studies. Treatment with SDI-711 (5 mg/kg/day) for 3 months increased ganglionic sorbitol (26-40 fold) and decreased fructose content (20-75%) in control and diabetic rats compared to untreated animals. SDI-711 treatment of diabetic rats produced a 2.5- and 4-5-fold increase in NAD in the SMG and ileal mesenteric nerves, respectively, in comparison to untreated diabetics. Although SDI-711 treatment of non-diabetic control rat ganglia increased ganglionic sorbitol 40-fold (a value 8-fold higher than untreated diabetics), the frequency of NAD remained at control levels. Levels of ganglionic sorbitol pathway intermediates in STZ-treated rats (a model of type 1 diabetes) and Zucker Diabetic Fatty rats (ZDF, a genetic model of type 2 diabetes) were comparable, although STZ-diabetic rats develop NAD and ZDF-diabetic rats do not. SDI failed to increase diabetes-related ganglionic NGF above levels seen in untreated diabetics. Initiation of Sorbinil treatment for the last 4 months of a 9 month course of diabetes, substantially reversed the frequency of established NAD in the diabetic rat SMG without affecting the metabolic severity of diabetes. These findings indicate that sorbitol pathway-linked metabolic alterations play an important role in the development of NAD, but sorbitol pathway activity, not absolute levels of sorbitol or fructose per se, may be most critical to its pathogenesis.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/inducido químicamente , Diabetes Mellitus Experimental/fisiopatología , L-Iditol 2-Deshidrogenasa/antagonistas & inhibidores , Pirimidinas/efectos adversos , Animales , Axones/metabolismo , Axones/patología , Glucemia/fisiología , Peso Corporal/fisiología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Ganglios Simpáticos/patología , Ganglios Simpáticos/ultraestructura , Hemoglobina Glucada/metabolismo , Inositol/metabolismo , Masculino , Mesenterio/inervación , Microscopía Electrónica de Transmisión/métodos , Tamaño de los Órganos/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Zucker
11.
Am J Physiol Endocrinol Metab ; 288(1): E278-84, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15367396

RESUMEN

We reported (Yarasheski KE, Zachwieja JJ, Gischler J, Crowley J, Horgan MM, and Powderly WG. Am J Physiol Endocrinol Metab 275: E577-E583, 1998) that AIDS muscle wasting was associated with an inappropriately low rate of muscle protein synthesis and an elevated glutamine rate of appearance (Ra Gln). We hypothesized that high plasma HIV RNA caused dysregulation of muscle amino acid metabolism. We determined whether a reduction in HIV RNA (> or =1 log) increased muscle protein synthesis rate and reduced R(a) Gln and muscle proteasome activity in 10 men and 1 woman (22-57 yr, 60-108 kg, 17-33 kg muscle) with advanced HIV (CD4 = 0-311 cells/microl; HIV RNA = 10-375 x 10(3) copies/ml). We utilized stable isotope tracer methodologies ([13C]Leu and [15N]Gln) to measure the fractional rate of mixed muscle protein synthesis and plasma Ra Gln in these subjects before and 4 mo after initiating their first or a salvage antiretroviral therapy regimen. After treatment, median CD4 increased (98 vs. 139 cells/microl, P = 0.009) and median HIV RNA was reduced (155,828 vs. 100 copies/ml, P = 0.003). Mixed muscle protein synthesis rate increased (0.062 +/- 0.005 vs. 0.078 +/- 0.006%/h, P = 0.01), Ra Gln decreased (387 +/- 33 vs. 323 +/- 15 micromol.kg fat-free mass(-1).h(-1), P = 0.04), and muscle proteasome chymotrypsin-like catalytic activity was reduced 14% (P = 0.03). Muscle mass was only modestly increased (1 kg, P = not significant). We estimated that, for each 10,000 copies/ml reduction in HIV RNA, approximately 3 g of additional muscle protein are synthesized per day. These findings suggest that reducing HIV RNA increases muscle protein synthesis and reduces muscle proteolysis, but muscle protein synthesis relative to whole body protein synthesis rate is not restored to normal, so muscle mass is not substantially increased.


Asunto(s)
Infecciones por VIH/metabolismo , VIH/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/virología , Adulto , Aminoácidos/metabolismo , Terapia Antirretroviral Altamente Activa , Composición Corporal , Isótopos de Carbono , Quimotripsina/metabolismo , Endopeptidasas/metabolismo , Femenino , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Isótopos de Nitrógeno , ARN Viral/sangre , Tripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...